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Preface

This report is part of a project titled “Representing the Allocation of Forces, Fires, and Effects 
Using Genetic Algorithms.” The project strives to develop appropriate representations of intelli-
gence-driven command and control for use in U.S. Army constructive simulations. This report, 
“Allocation of Forces, Fires, and Effects Using Genetic Algorithms,” explores a method for rep-
resenting sophisticated command and control planning algorithms that specifically concern 
maneuver planning and allocation schemes. The report describes a model developed within the 
RAND Corporation that uses genetic algorithms to compute the allocation of forces, fires, and 
effects with detailed look-ahead representations of enemy conduct. The findings should be of 
interest to those concerned with the analysis of command, control, communications, comput-
ers, intelligence, surveillance, and reconnaissance (C4ISR) issues and their representations in 
combat simulations.

This research was supported through the Army Model and Simulation Office (AMSO)–
formed C4ISR–Focused Area Collaborative Team (FACT). It was sponsored by the U.S. Army 
DCS/G-2 and conducted within RAND Arroyo Center’s Force Development and Technol-
ogy Program. RAND Arroyo Center, part of the RAND Corporation, is a federally funded 
research and development center sponsored by the United States Army. 

The Project Unique Identification Code (PUIC) for the project that produced this docu-
ment is DAMII05006.
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Summary

Decisionmaking within the Future Battle Command structure will demand an increasing abil-
ity to comprehend and structure information on the battlefield. As the military evolves into a 
networked force, strain is placed on headquarters and others to collect and utilize information 
from across the battlefield in a timely and efficient manner. Decision aids and tools on the 
battlefield, as well as solution methodologies in constructive simulations, must be modified to 
better show how this information affects decisions.

This report demonstrates how a particular algorithm can be adapted and used to make 
command and control decisions in analytical planning tools and constructive simulations. We 
describe a model that uses genetic algorithms in the generation of avenues of approach (AoAs), 
also called “routes” and “paths,” and the allocation of forces across those AoAs.1

The model is a representation of planning because it uses intelligence products to deter-
mine a preferred route or set of routes and allocate forces to those routes. The intelligence 
products consist of (1) information about Blue forces, such as their mission and location; 
(2) information about Red forces, such as their location, capability, intent, and activity; and 
(3) information about the environment.

We used a genetic algorithm to stochastically search the vast space of possible maneuver 
schemes (routes) and allocations of forces to these routes. This technique is appropriate for such 
decisionmaking not only because it can quickly search a very large space but also because it 
can find “good,” feasible, although suboptimal, solutions without becoming mired in an opti-
mization routine. Because real-world problems are not, generally speaking, convex, we are not 
guaranteed to find global optimal solutions. Hence, some sort of heuristic, such as a genetic 
algorithm, is required. To improve the efficiency of our search, we broke the model down into 
two phases, each of which has a genetic algorithm at its core. The first phase discovers potential 
routes; the second determines a desirable allocation of forces to those routes.

The model developed in this report is unique in many respects. It incorporates many 
higher-level intelligence products, such as intelligence about location, activity, intent, and capa-
bility, into the planning algorithm.2 It also includes information about the intelligence capabil-
ity and adaptability of the adversary. Although many of these parameters are largely concep-
tual, our descriptions of them are not. We quantify each parameter in the model and hence 
parameterize the battlefield.

1 We use the terms AoA, route, and path synonymously throughout this report.
2 For additional information about these information products and the fusion of such information, see Pernin et al. 
(2007).
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The employment of such a diverse set of intelligence products allows for sophisticated 
look-ahead representations of Red forces as opposed to the “static” snapshot representations 
that are typically used in planning sessions. These more-sophisticated representations of Red 
forces allowed a diverse set of outputs to occur (see Figure S.1), including the discovery of 
Blue tactical “feints” with no hardwired heuristic to drive the solution to this famous military 
tactic.

The model also features terrain representations that affect each side’s ability to move and 
hide. Terrain is characterized by three parameters: impassibility, inhospitableness, and shadow-
ing. “Impassibility” measures the degree to which Blue finds certain terrain difficult to cross. 
“Inhospitableness” measures the degree to which Blue believes that terrain will affect Red’s 
choice of location. “Shadowing” models the influence of terrain on Red’s effect on Blue. As an 
effect on effect, shadowing is a second-order consideration, and although we have included a 
description of the effect of shadowing in this report, we do not currently implement the shad-
owing function in our computer model.

To validate the model, we first considered a simple scenario in which Red was stationary 
and located at the midpoint between Blue’s start and end points. Blue’s mission was to reach 
his destination while minimizing his exposure to Red. Routes discovered by the model show 
that the chosen path depends on intelligence about Red’s location and capability. Specifically, 
if Blue is relatively certain about Red’s location and capability, then Blue benefits from maneu-
vering around Red. However, if Blue is very uncertain about Red’s location or capability or 
both, Blue does not benefit from maneuvering around the enemy, but rather should take the 
most direct route to his destination. Over various cases, the model clearly demonstrates the 
value of intelligence in the planning process.

Figure S.1
Tactical Feint as Blue Plans to Move from Point A to Point B to Avoid a Mobile Red

A

B

RAND TR423-S.1

NOTE:  Three separate paths are shown in this example. Red starts at the position shown 
between points A and B.
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The model also demonstrates the influence of terrain on AoA selection. We modeled a 
simple mountain feature that affected both Blue and Red forces. Because Red was less likely 
to travel over the mountainous area, his effect on Blue was diminished in this region. Hence, 
we expected this region to be more desirable to Blue. However, the desirability of Blue routes 
was also penalized by the difficult terrain. Ultimately, the model discovered Blue AoAs that 
avoided the mountainous region as much as possible while minimizing Blue exposure to Red.

We also considered various other cases to demonstrate the effect of enemy intelligence and 
adaptability on AoA selection. Enemy adaptability is the rate at which Red receives updates 
about Blue’s route. Enemy intelligence is the amount of information Red receives at each 
update. Unsurprisingly, Blue is more likely to evade a less adaptive Red than a more adaptive 
Red. Also, more-intelligent Red forces diminished Blue’s options.

We also demonstrated the effect of Blue knowledge of Red activity on Blue force alloca-
tion to AoAs. Activity knowledge is the likelihood that Blue knows to which AoA each Red 
unit has been assigned. We found that with partial activity knowledge, Blue tries to dominate 
Red where Blue expects Red to be; Blue will also allocate forces where he expects Red not to 
be. With perfect activity knowledge, Blue can completely avoid the AoA where the dominant 
Red force is located.

Our model should be of use to those considering command and control representations 
in combat simulations.
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CHAPTER ONE

Introduction

Decisionmaking within the Future Battle Command structure will demand an increasing abil-
ity to comprehend and structure information on the battlefield. As the military evolves into a 
networked force, strain is placed on headquarters and others to collect and utilize information 
from across the battlefield in a timely and efficient manner. Decision aids and tools on the 
battlefield, as well as solution methodologies in constructive simulations, must be modified to 
better show how this information affects decisions.

The problem with the progression to an information-centric force lies in how best to 
incorporate all relevant pieces of information about both Blue and Red while making com-
mand decisions. This report demonstrates one method for incorporating sophisticated intel-
ligence information on Red location, capabilities, and intent into the generation of Blue plans. 
Specifically, we describe a model that uses genetic algorithms to determine avenues of approach 
(AoAs) and the allocation of forces and effects across those AoAs.1

The generation of AoA and force-allocation schemes fits generally into the command and 
control (C2) research that is part of a larger portfolio of projects at RAND (see Pernin et al. 
[2005] and Pernin et al. [2007], for examples). The overarching goal of this body of research is 
to forge a strong analytical linkage between C2, communications, computers, and ISR (C4ISR) 
and operational outcomes (see Figure 1.1). This linkage is meant to work in concert with other 
processes for use in constructive combat simulations and other analytical devices. This report 
makes use of intelligence products generated in the fusion process (Pernin et al. [2007]) in new 
C2 decisionmaking algorithms for the allocation of forces, fires, and effects.

1 We use the terms AoA, route, and path synonymously in this report to refer to geographical lines of progression that a 
unit, group, or person might take to get from one point to the next. The term scenario captures the larger context in which 
the path is being taken. Thus, in a given scenario (such as a full frontal assault on enemy positions), multiple paths might be 
followed by different units advancing in the assault.

Figure 1.1
The Linkage Between Intelligence, Surveillance, and Reconnaissance (ISR) and 
Operational Outcomes

ISR Fusion C2
Operational
outcomes

Sensor
data

Decisions,
actions

SA

Communications

Communications

Communications

RAND TR423-1.1
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Approaches to both the modeling and execution of C2 are evolving. In the past, many 
constructive simulations used scripted or rule-based approaches in which subject matter experts 
determine, to some degree of precision, the results of many decisions before the simulation is 
run. These rules do not change during the course of the simulation, and although they may be 
appropriate early in a model run, they do not necessarily remain so as the simulation evolves.

More-recent models of C2 use valuation approaches in which information generated 
during a run is used to calculate parameters for decisionmaking. Myopic strategies base their 
decisions on the model state at the current time step in a combat simulation. These types of val-
uation strategies can be easy to implement, but their ability to provide satisfactory results many 
time steps later is often limited. Look-ahead strategies, on the other hand, estimate future 
states and make decisions based not only on the current state but also on expectations of future 
states. Forecasting these expected future states is challenging. Given the large space of possible 
outcomes, an efficient means of searching this space is required. In an example described by 
the Military Decision Making Process (MDMP), three alternative courses of action are gener-
ated from analysts who are able to reasonably generate future enemy tactics and maneuver.

Algorithms Considered

Allocating forces, fires, and effects to AoAs creates a very large search space in which an ana-
lytical tool must represent decisionmaking. Hence, we began our research by exploring a vari-
ety of potential algorithms, including various heuristics, neural and Bayesian networks, fuzzy 
logic, and greedy and genetic algorithms. This report details our focus on the development of a 
genetic algorithm (GA) as a means of efficient stochastic search. Table 1.1 briefly summarizes 
the algorithms that we considered and presents some justification of our decision to use the 
GA.

Table 1.1
Many Decision Algorithms Are Available

Type Description Useful Applications

Greedy algorithm Makes decisions sequentially based on 
what seems best at the moment

Deciding a route via a series of 
individually low-cost moves

Artificial neural network Mimics neural circuitry; learns by 
example

Deciding enemy intent based on 
formation

Bayesian belief networks Makes inferences about the likelihood 
of events using Bayesian statistics

Deciding enemy objectives given an 
enemy state

Fuzzy logic Determines partial-set memberships of 
system states

Deciding whether units are correctly 
spaced

Genetic algorithm Evolves a population of solutions via 
natural selection

Deciding a route based on overall cost
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Neural Networks

Neural networks (NNs) come in many varieties, but each rests on the concept of a neuron as 
a unit for information storage and mapping input to output. A single neuron usually receives a 
numerical input vector that is either binary or part of a continuum. Each element of the input 
vector is scaled by a weighting constant, which essentially assigns a degree of importance to 
each input. The result of the dot product is then entered into a “squashing” function whose 
output, a number between either 0 and 1 or –1 and 1, is then sometimes used as the input to 
another neuron.2 NNs are just one of a number of connectionist approaches to modeling.

Neurons are connected together in many different ways to develop NNs. The most 
common connection type is the 3-layer, feed-forward network, in which a row of input neu-
rons, each of which takes one input with one weight, passes its output to another layer called 
the “hidden” layer (because its output is not shown). The hidden layer computes and then 
passes its outputs to the output layer, which performs a final computation before giving the 
answer. Feed-forward networks (sometimes recurrent) are useful for classifying inputs into a 
small number of slots. Other types of networks are self-organizing maps (SOMs) in which neu-
rons are connected together in a grid such that each neuron is connected only to its neighbors, 
receiving input from the bottom and giving output at the top. SOM-like networks excel at 
picking out features from images. Other network types include Hopfield networks (recurrent) 
and Boltzmann machines (stochastic).

NNs can be trained to produce specific outputs for specific inputs and also to produce 
specific answers for specific kinds of inputs. This leads to their most common usage: pattern 
recognition. Their status as a decision algorithm rests on their ability to classify inputs for 
which they have not been previously trained. The greatest disadvantage of NNs is that they 
are exceedingly slow to train because they are usually run on a single processor computer and 
do not take advantage of their massive parallel processing potential—the potential that nature 
maximizes in human brains. We see the same problem later in GAs.

NNs are out of favor as a decisionmaking algorithm because they lack computational 
efficiency and tend to act as a “black box” unless a laborious query-and-response procedure 
is undertaken to develop rules after training is complete. (After training, the network can be 
discarded.)

NNs have been successfully applied to automatic target recognition (Rogers et al. [1995]) 
and data fusion (Bass [2000]; Filippidis et al. [2000]) and in agent-based, recognition-primed 
decision models (Liang et al. [2001]). Other applications include synthetic aperture radar image 
classification (Qin et al. [2004]) and determining decisive points in battle planning (Moriarty 
[2000]).

Bayesian Belief Networks

Bayesian belief networks are another example of a connectionist approach to decisionmaking.3 
In this case, the network is designed in accordance with expert knowledge instead of trained. 
Belief networks allow users to develop a level of confidence that a particular object will be in 
a particular state based on certain available information. For example, suppose a person in a 
house comes to a door whose handle is hot and sees smoke coming from under the door. That 

2 Sometimes a Heaviside function is used instead. When continuity or differentiability are required, a sinusoid or an 
inverse hyperbolic tangent is chosen.
3 See Krieg (2001) for a short, referenced tutorial on Bayesian belief networks and their application to target recognition.
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person might reasonably infer that there is a fire on the other side. Two pieces of information—
the hot door handle and the smoke under the door—support the inference. Belief networks, 
in fact, take this idea a step further and add probability to facts and inferences. The particular 
weight attached to each fact indicates how much credence the fact lends to an inference. So, a 
hot door handle may indicate a 50 percent chance of fire, while smoke indicates a 75 percent 
chance.

Bayesian networks are “directed acyclic graphs over which is defined a probability distri-
bution” (Starr et al. [2004]). Each node in the graph represents a variable that can exist in one 
of several states: For instance, a node could be “ground forces” and its states could be “attack-
ing,” “withdrawing,” or “defending.” The network is set up to represent causal relationships. If 
node 1 causes node 2, then we say that node 1 is the parent of node 2. For instance, an “enemy 
intention” node might be the parent of a “ground forces” node. Bayesian networks can be 
solved in several ways using conditional probability methods. If we know the “ground forces” 
state is “attacking,” this may give us an inference about the “enemy intention.” Conversely, we 
can use “enemy intention” to try to predict whether the ground forces will attack. Either way, 
we are using what we know to infer what we do not know.

Bayesian networks work best in domains where variables have a small number of states. 
They could be useful in multiresolution models where smaller Bayesian networks can be con-
nected into larger Bayesian networks and treated as “black boxes.” They are not a good choice 
for maneuver or force allocation because of their scalability limitations. Probabilities must be 
defined for each node’s input state or own-state pair, and these must be assigned by hand.

Fuzzy Logic

Fuzzy logic aims to represent logic in a more “human” way, which is to say that situations are 
not always decided 100 percent one way or another. Fuzzy logic is perhaps the simplest deci-
sion method and is quite useful when combined with other methods. Invented by Lotfi Zadeh 
in the 1960s at the University of California, Berkeley, this method defines partial-set mem-
berships on system states.4 For instance, in their paper on a fuzzy-genetic design for Blue-unit 
spacing given an attacking Red force, Kewley and Embrechts (1998) mapped unit distance 
into two fuzzy sets, a “too close together” set and a “too far apart” set, each defined by the set 
of distances from 0 to an infinite number of meters. The distance between two Blue units was 
calculated and then assigned a level of membership in each set. Any distance over 10,000 m 
was too far apart, having a probability of 1, but below that distance the set membership level 
decreased linearly until 5,000 m, at which point membership dropped to 0. Between 5,000 
and 500 m, units were considered correctly spaced and had membership in neither set. At 500 
m, the probability of membership in the “too close together” set increased linearly until 250 
m, when it reached 100 percent. There is a continuum of set membership into which humans 
classify objects and events.

Fuzzy logic, although powerful when combined with other methods, requires a lot of 
manual trial and error, and the risk of designer bias in implementation is greater compared to 
trained methods such as GAs and NNs. On the other hand, if a problem is defined in a way 
that makes the set membership function obvious, then it becomes a much better choice and 
simpler to implement.

4 For example, see Bellman et al. (1964).
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In maneuver planning and force allocation, fuzzy logic’s usefulness comes from its ability 
to synthesize easy-to-understand statements from complex data, a kind of fusion. Instead of 
saying that units are 7,000 m apart, which is a fact, fuzzy logic gives an opinion that is more 
useful: The forces are 50 percent too far apart. This leads to the judgment that they ought to be 
closer together. Thus, fuzzy logic allows facts to be translated into judgments quite easily. What 
fuzzy logic is not good at is telling a unit to go to a particular point (e.g., specific coordinates). 
It can tell a unit to “go left” or “turn around,” given some input data, but these are local judg-
ments based on current circumstances. Global judgments are not possible using fuzzy logic 
unless another algorithm, such as a GA, is included.

A* and Other Greedy Algorithms

The gaming community relies heavily on greedy algorithms for determining paths through 
cost topologies. The algorithm known as A* (pronounced “ay-star”) is the most common. 
It combines the Best-First-Search algorithm, a quick algorithm, and Dijkstra’s route-finding 
algorithm, which is an optimal solution-finding algorithm. A* works by starting at a node and 
using a heuristic to determine the best node to move to from its present node. The choice of 
this heuristic can depend on many things. For certain choices, A* will behave exactly like Dijk-
stra’s algorithm, testing every path. The downside of A* is that, while it is an excellent route 
finder, it requires that the designer choose a heuristic, which can lead to rather suboptimal 
paths if those paths are chosen poorly (Hart et al. [1968]).

Genetic Algorithms

GAs are useful in many applications.5 However, their reliance on initially random populations 
prompts one question: How are they different from random sampling? If we could derive a 
good solution to a problem with a large initial population of samples, we would not need a GA. 
We could save time by implementing mating and mutation and simply generate and evaluate 
thousands of potential solutions. Some problems are indeed amenable to random problem solv-
ers of this kind and do not require GAs. However, when the fitness landscape contains high, 
narrow peaks and wide stretches of barren waste between them, GAs are necessary. If the area 
covered by fitness peaks approaches zero compared to the number of bad solutions in the land-
scape—i.e., if good solutions are exceedingly rare—a random problem solver will rarely find 
a good solution. Such is the case in the natural world, where only a handful of configurations 
of molecules are reproductive out of the vast numbers of other configurations. These fitness 
landscapes correspond to the “difficult” problems where traditional algorithms fail, and GAs 
should be applied to these problems.

Determining AoAs and allocation schemes to fit those AoAs has largely been a human-
intensive product of wargaming. The MDMP relies on experienced soldiers to generate poten-
tial AoAs, and to consider during that process a wide variety of factors on the battlefield—from 
topography, weather, and time, to enemy capabilities, to the potential for surprise. Developing 
a robust way to automate and quicken this generation and pick out the few potential good 
AoAs from a sea of bad solutions reduces the effort expended by soldiers in the field. Because 
of the number of variables involved in choosing a good AoA, the method adopted must be 

5 The remainder of this report assumes a moderate background in basic GA techniques. For additional general informa-
tion on military decisionmaking that also includes information on GAs, see Jaiswal (1997). For an introduction to GAs, 
along with the history and motivations behind their use, see Mitchell (1996).
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good at finding those rare solutions among the many variables. GAs have been applied to such 
searching problems in the past and thus may provide attributes that facilitate such searching.

Perhaps the greatest advantage of GAs is that their design requires very few heuristics. 
Much like NNs and unlike the other algorithms previously mentioned, GAs discover the rules 
that create good solutions, and these rules are often ones that humans would rarely consider. 
The GAs’ advantage over NNs is that their input and output design is highly configurable and 
more intuitive. NN input must be in a vector format, and certain input configurations may be 
better than others. NN outputs must be in a vector format and must be numbers between 0 
and 1 or –1 and 1. Using heuristics, the designer must convert solutions and input data into a 
format that may not be either intuitive or optimal. GAs, on the other hand, merely need the 
input to be defined as the parameters of a fitness function whose output is a single number. The 
fitness function has an intuitive interpretation: It describes how “good” a solution is.

We have chosen to use a GA because it is fast, flexible, relatively intuitive and transpar-
ent, and lends itself to the discovery of a variety of options. A GA begins with a seed popula-
tion of trial solutions and then evolves this population over several generations to find better 
and better solutions. The process is analogous to natural selection: Solutions are grouped by 
similarity (“niched”), combined to form new possibilities (“mated”), varied slightly to allow for 
incremental improvement (“mutated”), and finally evaluated against each other (“competed”) 
to find the best of each generation to pass to the next. This process can be repeated a fixed 
number of times or until the solutions stop improving appreciably.

Model Overview

The purpose of this combat planning model is to develop options for Blue given both his mis-
sion and his intelligence about Red. As shown in Figure 1.2, this model finds several AoAs for 
Blue, allocates forces along these AoAs, and models the effects that Blue expects to encounter 

Figure 1.2
Model Inputs and Outputs
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along his routes given his intelligence about Red. Due to the large number of variables involved 
in the decisionmaking process, the “space” of Blue’s possibilities is sufficiently vast that an 
exhaustive search within a reasonable time (preferably a few minutes) is currently impossible. 
Instead of employing brute-force computation, we need a means of exploring possible alterna-
tives in a more intelligent and efficient manner; hence, we have chosen to use a GA.

As shown in Figure 1.3, our combat planning model is broken down into two phases, 
each of which uses a GA at its core. In the first phase, a GA finds a set of possible AoAs. In the 
second phase, a GA considers the allocation of Blue forces along these routes. We break the 
model into two phases, as opposed to tackling the entire problem in a single GA, to reduce 
computation time and hence improve the efficiency with which we find routes and force alloca-
tions. By breaking the problem into two halves and fixing the solution of the first half before 
solving the second, we have reduced computation time, accomplishing this through the elimi-
nation of part of our search space; we acknowledge that this comes at the expense of finding 
an optimal solution. However, we believe that this choice of algorithm is a reasonable compro-
mise between computation time and optimality for two reasons: First, we were not guaranteed 
to find an optimal solution, given the nonconvex nature of the problem. Second, the process 
of first determining AoAs and then finding associated force allocations closely parallels the 
human decisionmaking process.

Although the model’s outputs—a set of potential AoAs for Blue and an allocation of Blue 
forces to these AoAs—are concrete, the inputs—Blue’s mission and Blue intelligence about 
Red—are largely conceptual. We use four key parameters to describe Blue intelligence about 
Red: intent, activity, capability, and location. Of these four, the first three are conceptual, and 

Figure 1.3
The Model’s Two Phases
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only the last is concretely definable. For the conceptual parameters, we describe a model that 
quantifies them and hence parameterizes the battlefield. Our methodology is mathematically 
complex, but this is appropriate given the complexity of a combat engagement. Still, under 
lying the mathematics, the model is at heart a combination of a few relatively simple ideas.

This report describes the quantification of the inputs, the process behind each of the 
model phases, and how the model illustrates the value of intelligence. In Chapter Two, we 
describe the modeling of enemy capabilities and the effects of enemy capabilities on friendly 
forces. In Chapters Three and Four we describe the model’s first and second phases, i.e., the 
generation of AoAs and the allocation of forces to them. We introduce the terrain model in 
Chapter Five and explain how terrain affects both friendly and enemy movement. Chapter Six 
provides simulation results. In Chapter Seven we summarize our findings and present possible 
extensions.
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CHAPTER TWO

Modeling Enemy Capability and Effects

This chapter describes a quantitative model of enemy capability and how this capability trans-
lates into an effect that Red can have on Blue. We visualize enemy capability with a topograph-
ical effect map. Figure 2.1 illustrates how a physical map that depicts the geographic location 
of various units can translate into an effect map that depicts the capability of those units at any 
point on the physical map.

In our model, the effect map illustrates the “effect” a Red unit can exert on a Blue unit at 
a given fixed position at a given point in time. In other words, a Blue unit views a Red unit as 
having an influence or “effect potential” on Blue’s surroundings due to Red’s various capabili-
ties. The effect map is a generic picture of the capabilities of a Red unit that disregards the type 
of effect, which can be kinetic, nonkinetic, or both. We expect the Red unit’s peak on the effect 
map to increase as that unit’s capability increases.

Below, we introduce the concept of expected effect, which incorporates the uncertainty 
that exists in Blue’s knowledge of Red’s location. We then describe critical mathematical prop-
erties of the effect function, provide candidate functions, and present the effect function used 
in the model. Next, we derive an explicit expression for the expected effect using this effect 
function. To conclude, we relate the expected effect that Blue will likely encounter along his 
route to the fitness of the Blue route.

Figure 2.1
Enemy Capability and the Effect Map
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Expected Effect

The effect map construct, which describes Red’s effect on Blue at a given fixed position and 
time, assumes that Blue knows Red’s exact location. Of course, this is rarely the case. Instead, 
Blue typically possesses only some knowledge of Red’s whereabouts. Using this knowledge, we 
describe an expected effect that incorporates the uncertainty in Blue’s knowledge of Red’s loca-
tion (see Figure 2.2).

The effect function, as we see below, depends on the distance between Red and Blue 
units. Because Blue is somewhat uncertain about Red’s position, Blue cannot calculate the 
exact effect Red would have on it, but can only calculate an expected effect; this effect is aver-
aged over the likelihood that Red is located in any given position.

We represent Blue’s guess about Red’s position by a probability distribution that describes 
the likelihood that Red is located at some distance from a best estimate. The location uncer-
tainty and the effect function are convolved together to produce an expected effect. As seen in 
Figure 2.3, this convolution broadens and inflates Blue’s estimation of Red’s capabilities. This 
is due to uncertainty about Red’s location.

Figure 2.2
An Intuitive Understanding of Expected Effect
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The expected effect is simply the sum of effects that Red would exert on Blue at loca-
tion x, at all possible locations of Red, y, weighted by the probability that Red is at x. In other 
words, it is the average effect. Although we assume that Blue has perfect knowledge of his 
own location, we have only a probabilistic description of where Blue thinks Red might be: the 
location uncertainty function f(y). The double integral shown in Figure 2.3 is a mathematical 
representation of this averaging over the plane.

Here we assume that the area of engagement is small enough that the curvature of the 
Earth is unimportant. Although the horizon certainly affects Red’s line-of-sight capabilities, 
this limitation in distance could be accounted for in the effect function. The incorporation of 
terrain in general is discussed in Chapter Five.

The Effect Function

A robust model should depend only on the general attributes of the effect function and not 
on its exact shape. Since the effect function is simply a mathematical approximation, sensi-
tive dependence on its form would not be reasonable. This fact, however, gives us freedom to 
choose a mathematical function based on convenience. Our only requirement, then, is that the 
effect function satisfies a few basic properties.

First, the function should depend on the distance between Blue and Red units. It should 
be a symmetrical function with no preferred direction. In other words,

Z x y Z x y Z r( , ) (|| ||) ( ),

where x and y are vectors that describe Blue and Red locations, respectively, and r is a scalar 
that describes the distance between them. The incorporation of terrain effects, described in a 
later chapter, does not alter this property.

Second, the effect function should be additive, meaning that the effect of two Red units is 
the sum of the individual effects of each, and the effect is cumulative over time. This property 
permits the straightforward calculation of massing effects. Additivity is not a trivial property. 
Indeed, military units arguably experience increasingly larger benefits as they mass together. 
We start with an additive function not because we chose to ignore these synergistic effects, but 
because we show how to incorporate them later.

Finally, a minimum number of parameters should shape the function, and these parameters 
should be easily related to the underlying capabilities of the Red unit. In the cases described in 
this report, capabilities are parameterized by the unit’s “strength” and “range,” both of which 
can be deduced from quantitative values calculated from weapons effectiveness scores or simi-
lar measurements of military strength.
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Mathematically speaking, the Red effect function should

Be nonnegative and finite valued everywhere, and have a finite integral over all space. 
Specifically, 

0 0
2Z r Z Z d r a, r

should hold true for some positive finite values Z0 and a.
Be smooth, continuous, and differentiable. This property proves important when we 
describe how the effect function is used to quantify route fitness.
Decrease monotonically as the distance r between the Blue and Red units increases, 
attaining its maximum value at the origin (r = 0). Specifically, 

Z r
r

r
( )

,0 0

should hold true.
Have an inflection point, or knee in the curve, at some finite distance r0. This inflection 
point is required to fix and control the effective range of the Red force. Specifically,

2

2
00

0
Z r

r r r

( )

should hold true.

Many functions meet these criteria, but some of the simplest do not. We evaluated several 
candidate effect functions (see Table 2.1).

Power Law. The first type of function we considered is a power law. After all, almost every 
force in the known universe falls off as a power law (often an inverse square law). However, this 
function does not satisfy our three criteria. Not only is the function ill behaved at its center, 

Table 2.1
Candidate Effect Functions

Candidate Example Evaluation Criteria Comment

Power law

Z r
r

( )
1 Finite integral: Fails (infinite valued 

at origin)
Decreasing: Satisfies
Knee in curve: Fails (has no 

inflection point)

Fails too many 
criteria

Hyperbolic 
function Z r r( ) tanh ( )1

Finite integral: Satisfies (for α ≥ 1)
Decreasing: Satisfies (for α ≥ 2)
Knee in curve: Satisfies (for α ≥ 1)

Difficult to work 
with

Gaussian 

Z r e r( ) ( / )1

2 2
22 2

Finite integral: Satisfies
Decreasing: Satisfies
Knee in curve: Satisfies

Well understood 
and simple
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a point we cannot ignore, but it does not have a knee in the curve. Either it falls off too fast, 
giving the Red unit almost no range to speak of, or it falls off too slowly, giving Red nearly 
infinite range.

Hyperbolic Function. Trigonometric or circular functions (e.g., sine, cosine) decrease 
favorably; however, they oscillate and are therefore clearly unsuitable. The nonoscillatory ver-
sion of the circular function is the hyperbolic function (e.g., the hyperbolic tangent), which 
does, in fact, possess all the desired properties. Unfortunately, this function is not easy to work 
with.

Gaussian Function. For the effect function, we have chosen to use the Gaussian function, 
also know as “the bell curve” or “normal distribution.” It is well understood, it fits all three 
criteria, and it is mathematically easy to work with. It also happens to be the same shape as the 
location uncertainty function, which is traditionally a normal distribution.

Explicit Expression for Expected Effect

Having now selected a specific effect function, we can compute the expected effect. Here, the 
power of the Gaussian choice is clear: We can perform the integral over all space (i.e., we can 
conduct the averaging) explicitly and arrive at a single function that combines both effect and 
uncertainty. Not surprisingly, this new function is also Gaussian.

The location uncertainty is parameterized by the usual standard deviation ( ). It describes 
an error circle that surrounds the expected location of the Red unit. Although we could have 
chosen an error ellipse, breaking symmetry would have added a great deal of complexity for 
little reward. The uncertainty in Red’s position is represented as a two-dimensional normal 
distribution:

f y e

y y

( )
1

2 2
2

2

2 .

The standard deviation of the effect function, λ, does not represent an error (as it does in 
the location uncertainty function), but rather a range. It represents the knee in the curve. The 
only remaining parameter is the height of the Gaussian function. In this case, we use the ratio 
of the strengths of the Red and Blue forces (R/B). The effect function, Z(x,y), is represented 
by a two-dimensional Gaussian function in distance between Red and Blue, in which x and y 
are position vectors:

Z x y
R
B

e

x y

( , ) =
⎛
⎝⎜

⎞
⎠⎟

−
−

1

2 2
2 2

2

πλ
λ .

R/B is not the numerical ratio of the number of forces, but rather a ratio of their strengths 
designed to measure capabilities. The ratio provides an estimate of the relative strength of Red 
and Blue forces, should they come into direct and immediate engagement. These two param-
eters can be estimated from knowledge of the range and lethality of the weaponry of each unit. 
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Various scales have been developed to incorporate capabilities into quantitative combat simula-
tions and analyses as well as to support disarmament and strategic level force-balancing poli-
cies. Well-known systems of scoring—such as the weapon-effectiveness index scores used in 
combat simulations (Murray, 2002), UK variants such as Balance Analysis & Modeling System 
scores, and variants of these methods (for example, see Allen [1992])—should be evaluated and 
adopted in accordance with the effects that are most important to the decisionmaker.

The convolution of the effect and uncertainty in location, known as the expected effect, 
is again a two-dimensional Gaussian function, 

Z x
R
B

e

x y

( )
( )

( )1

2 2 2
2

2

2 2

whose standard deviation is

2 2 .

Relating Expected Effect to Route Fitness

So far, everything we have discussed concerning effect and uncertainty in location has related 
to a single snapshot in time. Before we proceed to the GA to discover Blue routes, we need to 
understand how to find the expected effect along a route. First, note that any route Blue takes 
will cut a path through the expected effect map as shown on the left side of Figure 2.4. We 
refer to the cross section that results as the “expected effect profile.”

In Figure 2.4, we assume that Red is stationary, but in reality, of course, Red will move. 
For a moving Red, we need a four-dimensional or animated plot to show the changing effect 
map over time. The effect profile, however, is still a two-dimensional plot of expected effect 

Figure 2.4
Expected Effect Map and Profile
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over time that will resemble the chart on the right side of Figure 2.4. Indeed, Blue will have 
to consider many possible movements of Red, including an adaptive Red that reacts to Blue’s 
behavior. We discuss such behavior later when we describe the GA itself.

We use measures of the effect profile to quantify the attributes of a Blue route. The selec-
tion of such measures to define the suitability or fitness of a Blue route is a separate matter, 
and there are many such measures, as we discuss below. We chose not to look for an absolute 
number that measures the fitness of a route across scenarios, but rather for a means of com-
paring two routes for the same scenario. As such, comparisons of specific fitnesses across sce-
narios are not possible with our model, but this utility is not a necessary characteristic of a tool 
designed to facilitate decisionmaking within a given scenario.

Summary

This chapter describes a quantitative model of Red capability and how this capability translates 
into a potential effect on Blue. We first defined a topographical effect map that is based on 
a physical map of Red units. The effect map, a generic picture of the kinetic and nonkinetic 
capabilities of a Red unit, describes Red’s effect on Blue at a given fixed position at a given 
point in time. Since Blue is unlikely to ever know Red’s exact location, we convolved this effect 
map with a location uncertainty function to obtain the expected effect (which is represented 
by another topographical map).

Next, we described desired mathematical criteria for the effect function and summarized 
our evaluation of three candidate functions. We explained our decision to model the effect 
function as a Gaussian function, which we also use to model the location uncertainty func-
tion. From the effect and uncertainty functions, we derived an explicit expression for expected 
effect. This new function, the convolution of effect with location uncertainty, is the convolu-
tion of two Gaussians; unsurprisingly, it is yet another Gaussian function.

We have discussed Red capability and location, but have not yet addressed intent and 
activity. Those parameters are described later, since they are scenario specific. We are now ready 
to discuss the GA, which will discover Blue routes on a battlefield of moving enemies.
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CHAPTER THREE

Generating Blue AoAs: The Phase One Genetic Algorithm

The first phase of our model uses a GA to evolve a population of potential Blue routes. As 
outlined in Figure 1.3, the GA begins with an initialization phase and then iterates through 
the processes of niching, mating, mutating, and evaluating fitnesses. We discuss each phase in 
turn.

Initialization

During the initialization phase, we generate a seed population of potential routes. These routes 
are generated randomly as follows: Each route begins as a straight line between the start and 
destination points and is then decorated with a random number of “waypoints” whose total 
number is drawn from an exponential distribution. Waypoints are not positioned on the 
straight-line path, but rather are placed somewhat off route to produce a more diverse set of 
paths. To incorporate a waypoint, one of the route segments is split into two smaller segments, 
bending outward or inward as necessary to include the waypoint. To insert a waypoint, we 
randomly choose a location along one of the route segments, and then add a new point per-
pendicular to this segment at some distance in either direction. This distance is drawn from a 
normal distribution whose mean is zero and whose standard deviation equals half of the origi-
nal segment length.

Mating and Niching

Once the initial population of routes is established, we pair off the routes and mate them 
to produce two new “children” routes. Every route is used only once as a parent and mates 
with only one other route. We also apply “niching” rules to limit the possible pairings. (These 
mating and niching procedures are discussed in detail later on in this report.) As in asexual 
reproduction, each generation’s unmated routes produce one child, an exact clone, except when 
mutations occur.

The mutation step is important because it helps the GA discover new and interesting 
routes. We implement mutation by allowing routes to add new waypoints or remove old 
ones. After the mating procedure has produced children, the children are mutated with some 
probability.

After mating and mutation, we have many families of four (two parents and two chil-
dren), plus a few “single-parent families” that consist of an unmated route and its mutated 
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child. The children and parents then compete against each other within each family, and only 
the two fittest routes (or single route, in the case of the single-parent family) survive and are 
passed on to the next generation. By forcing such competition, we ensure that the minimum 
(and maximum and average) fitness of all routes in each generation monotonically increases 
with each new generation.

Next, we explain why the niching process is an important component of the GA. Then, 
we describe the details of the niching algorithm used in our model. We then discuss how routes 
are mated and mutated. Next, we address the Red behavior model, which describes how Blue 
anticipates Red movement. We conclude with a description of route fitness, which ultimately 
determines survival in the GA.

The Need for Niching

The purpose of niching is to maintain diversity among a population of potential solutions. 
Since the purpose of the first phase of this model is to find a range of AoAs for Blue, and not 
merely a single best path, we need to explore the space of potential Blue routes and allow routes 
to settle into local optima. To find these local optima, known as “niches,” with a GA, you must 
mate like with like. This type of mating effectively breeds for unusual traits. Without niching, 
it is primarily the dominant traits that are passed on, and in time, the population is likely to 
approach homogeneity (Figure 3.1).

Just as the mating and mutation steps in the GA mimic a biological process, so does the 
niching procedure. In nature, speciation is a niching process that allows different types of 
organisms to develop in a common environment. Different species survive by exploiting their 
environment in unique ways. Niching aids in the discovery of more than one solution to a 
problem because it prevents dissimilar organisms from mating. Once two organisms are too 
different to mate, it is unlikely that their offspring will be compatible. Thus, species are born. 
In nature, members of different species rarely mate, and hybrids, when they do occur, are usu-
ally infertile (e.g., mules).

One of the nice properties of GAs is the transparent manner in which niching can be 
accomplished. Because GAs use mating to combine potential solutions to create new ones, 
niching is required to keep apart those “genomes” that solve the problem in radically different 
ways, ways that when combined, potentially yield no solution at all. Due to the niching algo-
rithm, the GA presents us at completion with several possible solutions, one for each niche. 

Figure 3.1
Over Time, Mating Without Niching Can Result in Homogeneous Paths
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These solutions may not be equally fit, but may be quite different, and each may have appeal-
ing qualities. Furthermore, when GAs attempt to solve hard problems with large state spaces, 
niching can be crucial to the discovery of any satisfactory solution.

Consider the following example: An infantry unit is searching for a path around a moun-
tain range. There are two paths the unit might take, one on each side of the mountain. In other 
words, there are two possible solutions to the problem. Without niching, a GA might attempt 
to “mate” these two solutions and eventually obtain an “averaged” path that goes directly 
over the mountain peak—an unacceptable alternative that may not preserve either of the two 
parent paths. However, niching prevents these parent paths, which are viable solutions, from 
becoming mates; thus, their niches are preserved.

The Niching Algorithm

Nature has its own means of determining when organisms are compatible. We must use a 
metric to tell our algorithm when two species are in two separate niches and hence not allowed 
to mate. There is no simple way to compare two paths and assign a number to the “difference” 
between them. Our method is a compromise between optimality and runtime. It extracts a 
small set of parameters from each path and compares this set only, rather than comparing 
entire paths. Although this method discards some information, it speeds up the GA signifi-
cantly. We also search for potential mates by random draw rather than exhaustive search. In 
other words, we look for a mate randomly and, if we find one within a set number of trials, we 
proceed. Otherwise, we declare the path to be an unmated bachelor and move on. The persis-
tence with which we search for a mate can greatly affect the runtime.

One important attribute of our niching algorithm is that it is scenario independent. We 
can select any two paths, compare them, and determine whether they belong to the same niche 
or not based on a criterion that is internal to the model and independent of the scenario.

For the purpose of niching, we characterize routes by their centroids, or average positions, 
as shown in Figure 3.2. To determine if two routes are suitable mates, we first measure the 
“distance” between them by measuring the distance between their centroids; then, we deter-
mine if this distance lies within a threshold limit. We must be careful that the niche threshold 
we choose does not make the algorithm scenario dependent. Hence, we cannot simply pick a 
fixed threshold, since the size of niches cannot be known ahead of time. Instead, we select a 
threshold based on the nature of the population itself. If the population is widely spread, we 

Figure 3.2
Paths Are Parameterized by Centroid
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look for larger niches by being less restrictive in our mate selection. However, if the population 
is narrowly distributed, we adjust our niche threshold accordingly, becoming more restrictive.

To determine how “spread out” a population is, we look at the standard statistics: the 
mean, variance, and covariance of the set of centroids. We use these statistics to defi ne a cova-
riance ellipse, allowing paths to mate only if their centroids fall within this ellipse. Specifi cally, 
given the covariance matrix S of the set of centroids, paths with centroids u and v are suitable 
mates if

( ) ( )u v S u v T1 1.

Th e centroid of every path in the population is located and extracted, as shown in Figure 
3.3. From that set, the mean, variance, and covariance are calculated. Th e distance between 
the centroids (normalized by the standard deviations in each direction) is used as a measure 
of the dissimilarity of the paths. Only paths whose centroids are suitably close (i.e., are within 
the covariance ellipse shown in Figure 3.4) are mated. Th is method is further explained in our 
description of the model’s second phase.

Figure 3.3
Centroids Are Extracted for Every Path in the Population
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Figure 3.4
Paths Whose Centroids Lie Within the Covariance Ellipse Are Potential Mates
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The Mating Procedure

The first part of the evolution process is mating. We use a standard crossover procedure to 
generate two children, as shown in Figure 3.5. First, a crossover point is randomly selected 
from the intermediate waypoints of the parent path that possesses the fewest waypoints. For 
example, if Parent 1 has five waypoints and Parent 2 has seven, then the crossover point is 
randomly selected from waypoints two, three, and four. The crossover point cannot be either 
of the endpoints, namely waypoints one and five. If waypoint three is selected as the crossover 
point, the two children paths are constructed as follows: One child path consists of the route 
segments that join the starting point (in our case it is the same for all paths) to the crossover 
point on Parent 1, namely the segments joining waypoints one to three, followed by the route 
segments joining waypoint four on Parent 2 to the endpoint. The second child is simply the 
complement: It consists of the route segments that join the starting point to waypoint three on 
Parent 2, followed by the segments joining waypoint four to the endpoint on Parent 1.

Since the point at which the crossover occurs is selected randomly, it may be closer to 
one of the endpoints than the other. Because we impose no requirements on the proximity of 
crossover points (i.e., waypoint three in parent paths 1 and 2 in the example above), child paths 
can make a sudden jump at the point of crossover. Although this procedure can create jagged 
paths, such paths are likely to be considerably less competitive or fit than their parents.

All four routes compete against each other, and only the two fittest are passed to the next 
generation. Before that competition occurs, however, each child route mutates slightly with 
some probability.

Mutation

As illustrated in Figure 3.6, we mutate routes in one of two possible ways: by adding a new 
waypoint or by subtracting an old one. We can choose either of these two methods with some 
probability, or choose not to mutate at all. We bias the simulation at least two to one in favor 
of adding additional points to make the routes more complex. While it often helps to add way-
points more than to subtract them to search the space, this addition of points also makes the 
route more circuitous. Hence, we also allow the option of subtracting a waypoint. If we did 
not do this, it would be difficult for a route to “straighten out” under the pressure of constant 
mutations.

Figure 3.5
Route Mating Procedure
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In the waypoint addition mode, each segment is weighted by its length, and the segment 
to be mutated is selected randomly. Hence, longer segments are more likely to be broken. The 
distance along the segment, x, is chosen randomly from a uniform distribution. The perpen-
dicular displacement from the chosen segment, y, is taken from a normal distribution whose 
mean is zero and whose standard deviation is half the original segment length. In subtraction 
mode the segment lengths are not weighted, but the point to be removed is still chosen ran-
domly. Endpoints cannot be removed.

After the routes have paired, mated, and produced offspring, and those offspring have 
been mutated, routes are then compared for fitness. We use the expected effect profile of the 
Blue route as the basis for this calculation, as discussed earlier. First, however, we must address 
Blue’s perception of Red and Red’s resulting motion model.

Red Behavior Model

Since the calculation of the effect profile of a Blue route necessarily assumes knowledge or 
inference of the average or expected position of Red, we must describe our model of how Blue 
anticipates Red movement. We cannot, of course, simply use the ground truth of Red’s posi-
tion, for that would give Blue too much information. The model of Red movement, or more 
accurately, Blue’s perception of Red movement, plays a crucial role in the development of Blue 
routes. This model also enables us to explicitly incorporate Blue’s perceptions of Red’s strategic 
intent, and Red’s intelligence and adaptability.

Figure 3.6
Route Mutation Procedure
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Red Intent

To determine Red behavior, we first need to quantify what Blue knows of Red’s intent and 
what “intent” means in our model. We allow Red to take one of several possible strategies, and 
we assign a fixed likelihood to each, representing Blue’s belief that Red will take that strategy. 
The possible strategies are

Hold ground.1.  Red stays where he is, regardless of what Blue does.
Move to location.2.  All Red units head directly to a specific location, without regard to 
(or knowledge of) Blue’s mission.
Individual intercept.3.  Each Red unit attempts to intercept Blue’s route as quickly as 
possible, without coordinating with other Red units.
Coordinated intercept (or mass effects). 4. All Red units attempt to intercept Blue’s 
route at the same point. This strategy requires coordination among the Red units. We 
assume that each Red unit has perfect knowledge of all other Red unit locations and 
hence can coordinate his efforts, but that Red may have imperfect knowledge about 
Blue’s location at any given point in time.
Attempt to escape.5.  All Red units flee from Blue as quickly as possible.

Since the focus of this model is to understand planning, route selection, and allocation, 
Blue calculates the effect profiles assuming that Red experiences no loss of will or attrition. 
The incorporation of expected loss from attrition or loss of will can occur in the evaluation 
of the fitness of the effect profile. Also note that although these potential Red strategies are 
not absolute and orthogonal—indeed, Red might be expected to assume varying degrees of 
each type of strategy for individual units—these five potential Red strategies are assumed to 
be representative of the landscape of possible Red strategies. In fact, some of the strategies, for 
instance mass effects, are worst-case scenarios because they assume that Red’s self-knowledge is 
very good. These demanding scenarios are appropriate for the purposes of planning, since Blue 
should plan against worst-case scenarios for each strategy rather than against less stressful but 
potentially more-plausible scenarios.

Although Blue is aware of the five possible strategies that Red may adopt, Blue does not 
have complete knowledge of what Red will do. We parameterize Blue’s knowledge of Red’s 
intent by assigning a set of normalized probability weights, w, to each strategy. These weights 
indicate Blue’s belief that Red will follow a particular strategy. Thus,

w w w w wn1 2 3, , , .

For all i, 

wi 0

and

wkk
n

1 1.
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For example, the kth strategy has an assigned probability of wk, which indicates that Blue 
believes Red will follow strategy k with probability wk.

We do not update Blue’s knowledge of Red intent as the scenario progresses. The model is 
intended to be a planning tool and, as such, Blue must plan based on his best available knowl-
edge of Red intent.1 Thus, while planning, Blue uses only the information at hand and does 
not model the possibility that learning more of Red’s intent in the future will allow him to 
improve his own choices.

Although a set of n weights is a good description of the knowledge of Red intent, we 
prefer a single statistic that measures this knowledge. The variance of this set of weights is such 
a statistic, and it is a fairly intuitive measure of Blue’s knowledge of Red intent. If all weights 
are equal, Blue knows nothing, and the variance is correspondingly 0. On the other hand, if 
one weight is 1 and the rest are 0, then Blue is certain of Red’s intentions, and the variance is 
in fact maximized.

A little exploration shows how to normalize this into a 0 to 1 measure.2 In our method, 
we use the statistic W, where

W
n

n w≡
−

×
2

2

1

and w
2 is the variance of w. In the limit of a large number of strategies, if the range of possible 

Red strategies is effectively narrowed down to 1, then W is 1; if it is narrowed down to just two 
choices (equally weighted), then W is one-half; if it is narrowed down three choices, W is one-
third, etc. We use the W statistic as a measure of Blue’s knowledge of Red intent.

Red Intelligence and Adaptability

With a handle on Blue’s knowledge of Red intent, we can now model (Blue’s perception of) 
how Red will react to Blue’s movement. For each potential Red strategy, we model Blue’s per-
ception of Red movement. For the most basic strategies, the first (hold ground) and the second 
(move to location), Red is assumed to be nonreactive. In other words, Red’s path is preplanned, 
and hence calculating the effect profile on any given Blue route is straightforward.

For the remaining strategies, we assume that Red will react to what he knows about Blue, 
and to what he believes he can predict about Blue’s future behavior. The path Red takes will 
depend on Red’s intelligence and adaptability.

To determine Red behavior, we slowly reveal Blue’s path to Red, allowing Red to adjust his path 
accordingly. We measure intelligence and adaptability in terms of time steps of knowledge, which are 
the total number of time steps of Blue’s path that have been revealed to Red at any given time.

There are three key parameters in the Red intelligence model: L0, ΔU, and D. At the start 
of the model (t = 0), we give Red a head start of L0 time steps of Blue movement. This represents 

1 In a real situation, if a commander learns additional information that might help in planning, the model can be run with 
an updated set of inputs. However, the model will still be a snapshot based on best available information. 
2 The desire for a 0 to 1 measure for Blue’s understanding of Red intent is driven by previous RAND research (Pernin 
et al. [2007]) that explored metrics for incorporating quantitative fusion algorithms into constructive simulations. In that 
research, location, activity, capability, intent, and other knowledge types are incorporated as probability distributions that 
relate qualitative measures to quantitative metrics for manipulation. Obtaining the data to support the method described 
above would require such a scheme.



Generating Blue AoAs: The Phase One Genetic Algorithm    25

Red’s initial intelligence about Blue’s activity. L0 may also be negative, indicating that Red does 
not realize Blue has begun to move until |L0| time steps have already passed.

As time progresses, we allow Red to receive periodic updates. Th e update interval, ΔU, 
represents the number of time steps between intelligence updates, thus setting the size of the 
decision loop. Th is parameter refl ects Red’s adaptability.

Parameter D is the rate at which Red’s intelligence is gaining on Blue or falling behind. 
Th e size of the update matters less than how that size compares to the update rate. If D > 1, 
Red has good intelligence and will eventually identify Blue’s full route before Blue reaches 
his destination. If D = 1, Red’s intelligence is good enough; Red will be able to keep up with 
Blue’s movement suffi  ciently to maintain his intelligence advantage (or disadvantage), staying 
that many steps ahead (or behind). If D < 1, Red’s intelligence is poor; Blue will reach his des-
tination well before Red realizes where Blue is going. If Red is falling behind, Red will try to 
project Blue’s movement into the future until the time of the next update (t + ΔU).

Determining Route Fitness

As previously mentioned, we use the expected eff ect profi le of each route as the basis for assess-
ing route fi tness. Now that we have a model of Red behavior, we can determine an anticipated 
Red route; from this route and the corresponding Blue route, we can determine the expected 
eff ect profi le for Blue.

Th e selection of a metric for the expected eff ect profi le is a matter of choice. Note that 
Blue’s objective should be refl ected in the calculation of route fi tness. Since we are considering 
a case in which Blue aims to minimize his exposure to Red, we chose a metric that minimizes 
some measure of the expected eff ect. Specifi cally, we use the sum of the eff ect over all time, or 
the “total eff ect,” as the single key parameter for each route, as shown in Figure 3.7.

Figure 3.7
Example Fitness Metric—Calculation of the Area Under the Curve
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We could, however, consider the maximum effect attained as the key parameter,3 or 
attempt to count the number of peaks above a threshold. Each choice leads to considerably dif-
ferent results for AoA selection. The choice of evaluation criterion should reflect the interests of 
the commander or subject matter expert running the model.

The next step is to relate the total effect to route fitness. We desire a fitness function that 
varies inversely with total effect and that runs between 0 and 1 for easy normalization (i.e., it 
has no negative values and it never runs away to infinity). We also desire an additional tuning 
parameter that will allow us to adjust Blue’s willingness to encounter Red’s effect. We have 
chosen for our model of route fitness, f, a decaying exponential function whose exponent equals 
the total effect scaled by (1/ ), as shown in Figure 3.8. Thus,

f e
E

≡
−

.

3 In the case of strict equivalent force size comparisons, one might consider using the 3-to-1 rule, applying a large penalty 
to those paths that violate it. In these cases, however, the value that comes from the calculation of the entire profile may be 
lost. See Davis (1995) for a more complete discussion.

Figure 3.8
The Fitness Function
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The parameter ε represents Blue’s willingness to engage, or in other words, Blue’s willing-
ness to expose himself to Red. As  is decreased, the fitness function becomes more sensitive 
to changes in the total effect, which translates into greater penalties for Blue (i.e., lower route 
fitness) due to an unfavorable force ratio or to prolonged proximity to Red or both.

To incorporate Blue’s knowledge of Red intent, we need to compute the basic fitness of 
the route, f, under the assumption that Red could follow each potential strategy. We then com-
pute the weighted sum of these fitnesses, each weighted by Blue’s belief that Red will follow 
that strategy. The result is the strategic fitness, f , expressed as

f w f
k

k k≡ ∑ ,

where each of the basic fitnesses ( fk) is computed separately, assuming that Red follows the 
corresponding kth strategy.

Summary

The first phase of the GA discovers Blue routes by initializing a population of those AoAs and 
then iterating through the processes of niching, mating, mutation, and fitness evaluation. The 
Blue route is defined by a list of waypoints that join the start and end points of the route. To ini-
tialize the first population, we begin with straight-line paths between the start and end points 
and then decorate these paths with randomly assigned waypoints whose total number is drawn 
from an exponential distribution. To determine suitable mates, we use a niching algorithm that 
(1) parameterizes each route by its centroid and then (2) determines the Mahalanobis distance 
between pairs of centroids to assess whether two routes are similar enough to mate. When two 
parent routes are found, they are mated by a crossover procedure, and their resulting children 
are mutated. We next determine the fitnesses of the resulting child routes to assess which will 
survive into the next generation. Child routes must compete with their parents, and only the 
top two fittest routes in each four-member family of AoAs survives.

To determine the fitness of a route, we first consider how Blue anticipates Red’s move-
ment; this movement is described by a Red behavior model. We begin by parameterizing Blue’s 
knowledge of Red’s intent by the probability that Red will take each of five distinct strategies. 
Then, for each of those strategies that depends on Blue’s route, we define a Red route based on 
a model of Blue’s perception of Red’s intelligence and adaptability. Given the route that Blue 
expects Red to take, we can determine an expected effect profile of Blue’s route through Red’s 
topographical expected effect map. We use the total effect, or area under the expected effect 
profile, as the key parameter for determining route fitness. Route fitness is then defined by a 
decaying exponential function with an exponent equal to the total effect, scaled by (1/ ). We 
then compute this fitness for each of the possible Red strategies, weight each by the probability 
that Red takes the corresponding strategy (this step represents Red’s intent), and then sum the 
result. This result is the strategic fitness. Chapter Four describes the second phase of the GA, 
which generates Blue force allocations.
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CHAPTER FOUR

Generating Blue Allocations: The Phase Two Genetic Algorithm

The second phase of the model is designed to be similar to the first. Again, a GA forms the 
core of the phase, which consists of an iterative process of niching, mating, mutating, and com-
peting among possible solutions. In the second phase, this process produces Blue allocations. 
A Blue allocation is a complete assignment of all Blue forces to the AoAs discovered in Phase 
One. In a Blue allocation, several or no Blue units can be assigned to a particular AoA. The 
iterative process used to evolve populations of Blue allocations is quite similar to that described 
in Phase One, which evolved populations of Blue AoAs. In Phase Two, every Blue allocation is 
mated exactly once, each mating pair produces exactly two children, and only the two fittest 
allocations from each “family” survive into the next generation.

Although the iterative process used in Phase Two closely resembles the one used in Phase 
One, there are some significant differences in the associated algorithm. Recall that in Phase 
One, when discovering Blue AoAs, we considered the case of a single Blue unit facing all of the 
Red forces. This is a worst-case scenario in which all of the Red forces were assigned to respond 
to a single Blue unit in accordance with one of the five strategies. Typically, Red responded by 
engaging Blue, but Red can also flee; in some cases, Red pursued his own plans without regard 
to Blue, resulting in no response at all. To determine the fitness of a Blue allocation, we can no 
longer assume that Blue faces the combined attention of all the Red forces. Instead, we must 
now describe how Red chooses to array his forces; we must quantify Red’s activity.

To define Red’s activity, we ask the following question: If Red observes Blue units pur-
suing a particular AoA, which Red units, if any, will respond (by engaging, fleeing, ignoring, 
or holding ground)? Here we simplify the situation by assuming that one Red unit cannot 
respond to advances along two AoAs simultaneously; instead, we presume that the Red unit 
will concentrate his efforts on one AoA only. We also assume that Red units will be assigned to 
deal specifically with advances along AoAs rather than be arrayed against specific Blue units. 
In other words, we assume that Red uses a “zone” defense rather than a unit-on-unit defense. 
However, we do not mean to imply that Red is acting defensively.

We then define Blue’s knowledge of the activity of each individual Red unit as Blue’s level 
of knowledge about with which AoA (which “zone”) each Red unit will concern itself. This 
process is described in greater detail below. At the moment, we simply wish to observe that 
just as we speak of Blue allocations to the set of AoAs, so we can also speak of Red allocations 
to the same set.

Because Blue’s knowledge of Red activity is unlikely to be perfect—in other words, Blue 
does not know with certainty how Red will allocate his forces—Blue must consider a field of 
possible Red allocations. To compute the fitness of a Blue allocation, we evaluate this alloca-
tion against a field of plausible allocations of Red forces, which are, as noted above, assigned 
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to oppose or attack along the various AoAs. In the case of perfect knowledge of Red activity, 
there is by defi nition only one possible Red allocation, and hence our “fi eld” reduces to a fi eld 
of one.

Next we describe the niching algorithm used to fi nd viable mates. We then discuss how 
Blue allocations are mated and mutated. Next, we describe how a fi eld of Red allocations is 
defi ned based on Blue’s knowledge of Red’s activity. After explaining how to calculate the fi t-
ness of a Blue allocation, we relate this fi tness back to the parameters that describe Blue’s mis-
sion and intelligence.

The Niching Algorithm

Recall that during Phase One of our model, we applied niching to the centroids of candidate 
AoAs. In Phase Two, we apply niching to candidate force allocations, where each force alloca-
tion is represented by an n-dimensional vector (if there are n AoAs) with components that cor-
respond to the total strength of units assigned to each AoA. Figure 4.1 graphically depicts eight 
distinct allocations to three AoAs. Hence, each allocation is a point in 3-dimensional space.

For example, assume there are three units of equal strength and an allocation of [1, 0, 2]. 
Th is allocation vector signifi es that we have assigned one unit to AoA 1, none to AoA 2, and 
two to AoA 3. (If the units are of unequal strength, weight them accordingly.)

Given this representation of an allocation, we can use a niching algorithm similar to the 
one that described in Phase One. Recall that in Phase One, the points existed in two dimen-
sions and represented the centers of mass of the candidate routes. In Phase Two, we have points 
in n dimensions that represent exactly a Blue allocation (as opposed to some measure of it).

To determine if two allocations are “close enough” to be mated (and hence belong to 
the same niche), we look at the distance between these points weighted by a measure of the 
variation of all points in the population. As in Phase One, we recognize that the population of 

Figure 4.1
Allocating Forces Across Three AoAs
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points may be more spread out in one direction than another. Hence, to find a distance metric 
that takes this variation into account, it is necessary to weigh the distance by the population 
variances in each direction. In the two-dimensional space considered in Phase One, we only 
needed to consider the covariance ellipse to find such a metric. In Phase Two, we are interested 
in higher dimensions, since the number of AoAs determines the dimension of the space. The 
generalization of this metric for higher dimensions is the well-known Mahalanobis distance, 
d, which weights the standard Euclidean distance by the inverse of the covariance matrix, S. 
For two points, u and v, in n-dimensional space, the Mahalanobis distance between them is 
given by

d u v u v u v, ( ) ( )( ) ≡ − ⋅ ⋅ −S .-1 T

All points equidistant from a common point using this metric lie on an ellipse. Hence, in two 
dimensions, the level curves of this metric are concentric ellipses.

Here we note an important implementation detail of the niching algorithm. Observe 
that the sum of all allocated forces, which is the sum of components in our force allocation 
vector, is always constant. Hence, all points in the “allocation space” lie in a plane, a subspace 
of dimension n – 1. Because of this degeneracy, the n × n covariance matrix will be singular 
(noninvertible).

Fortunately, we can eliminate the extra dimension manually if we rotate our coordinates 
into this subspace and then consider only the (n – 1) × (n – 1) covariance matrix of the (new) 
coordinates within the subspace. For two AoAs (two dimensions), this is the equivalent of 
“rotating” our coordinates to consider the sum and difference of the force strengths assigned 
to the two AoAs. Since the sum of all force strengths remains fixed, the (signed) difference 
between those assigned to the first and second AoAs is sufficient to completely specify the allo-
cated strengths.

Hence, due to the singularity of the covariance matrix, we must rotate our coordinates 
before we compute the Mahalanobis distance. After the rotation, the resulting point in the 
“allocation space” will have n – 1 independent coordinates. We use these coordinates to build 
the covariance matrix required to evaluate Mahalanobis distances.

The Mating and Mutation Procedures

To mate and mutate strategies, we need a mathematical description of a Blue allocation that 
facilitates these processes. We represent a Blue allocation as an ordered list that contains pre-
cisely one entry for each individual Blue unit (as opposed to one entry for each AoA that was 
used in the niching algorithm). The entry for each unit shows which AoA that unit will pursue. 
For example, an allocation of [1, 3, 3] means the first unit takes AoA 1, while units two and 
three take AoA 3. In this example, no unit takes AoA 2.
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To mate two force allocations, we apply the following rules:

If a given unit is assigned to parents with two different AoAs, it will be randomly assigned 1. 
to one of those AoAs in one offspring and the other AoA in the other offspring.
If a given unit is assigned to parents with same AoA, it will be assigned to that same 2. 
AoA in both offspring.

To decide which child draws from which parent, we flip a coin once for each unit in 
the allocation. For example, consider the case where Parent 1 is the Blue allocation [1, 2, 3] 
and Parent 2 is the Blue allocation [2, 1, 3]. Since both parents have placed the third unit on  
AoA 3, both children will also have the third unit on AoA 3. The other two units, however, are 
allocated differently. Two equally likely pairs of offspring are possible: a new pair ([1, 1, 3] and 
[2, 2, 3]) and a pair that looks just like the original parents. Note that a trivial mating result 
is always possible.

Mutating an allocation involves the possible shifting of a unit from one AoA to another. 
Mutation is important because it helps the GA discover a wide range of potential allocations. 
In our model, each parent allocation has a 10 percent chance of moving each unit to a differ-
ent AoA before mating to produce the children. Tuning this parameter is important because 
its value affects how rapidly the GA explores the space and how stable it is from one genera-
tion to the next. If the mutation rate is too low, the space of possible allocations may never be 
fully explored, whereas if the rate is too high, the GA may continually bump allocations out of 
their niches and may never settle down to a stable solution. We arrived at 10 percent through 
trial and error rather than analytical methods, but it appears to be a reasonable compromise 
between stability and diversity.

Defining a Field of Red Allocations

We now address Blue’s knowledge of Red activity in greater detail. By activity, we mean Red’s 
allocation of his own units to the AoAs. We measure Blue’s knowledge of Red’s activity on a 
per-unit basis by the probability that Blue knows to which AoA a Red unit has been assigned. 
For example, suppose that Red has three units, and Blue’s activity knowledge is represented by 
the vector [0.0, 0.7, 0.3]; this vector specifies that Blue has no knowledge of Red unit 1’s activ-
ity, that there is a 70 percent chance Blue knows the true assignment of Red unit 2, and that 
there is a 30 percent chance that Blue has learned the true assignment of Red unit 3. (We do 
not consider the possibility that Blue’s beliefs are mistaken.) Because this activity vector repre-
sents additional knowledge of the scenario, it must be specified externally. More specifically, 

a a a a an1 2 3, , ,

where ai, the activity level for unit i, is the probability that Blue knows the AoA of Red unit i.
Based on Blue’s knowledge of Red activity, we generate a field of potential Red alloca-

tions. For each Red allocation, we compare a random draw to the activity knowledge for each 
unit to determine if we know to which AoA the unit has been assigned. If we do not know the 
unit’s assignment, we randomly assign it to an AoA. If we do know the unit’s assignment, then 
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we assign it to the AoA specified in the ground truth (which must be defined as part of the sce-
nario). We repeat this process multiple times to create a field of potential Red allocations.

Fitness of a Blue Allocation

Now that we have described the generation of a field of potential Red allocations, we must 
address how to evaluate the fitness of a Blue allocation, which could face any of the Red alloca-
tions described in this field. The final fitness of a Blue allocation is a weighted average of basic 
route fitnesses over routes, strategies, and potential adversary allocations. We defined basic 
route fitness in Phase One as the fitness of a route for a single Blue force, given that a fixed 
number of Red units were assigned to oppose it in accordance with a specific strategy (inter-
cept, mass effects, escape, etc.). Now, we must contemplate a varying number of Red units 
across a set of different Red strategies, and we must do this for all AoAs.

To find the fitness of a Blue allocation given a specific Red allocation, we first consider the 
averaging that occurs over strategies and then consider the averaging over AoAs. Recall that 
in Phase One, we defined the strategic fitness of an AoA as a weighted average of basic route 
fitnesses, weighted by the likelihood that Red would follow each of the possible strategies. 
We now define the specific fitness of a Blue allocation as the average of strategic fitnesses over all 
AoAs. Therefore, if m is the number of populated AoAs, then

F
m
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It is important to note, however, that we average only over the AoAs to which Blue assigns 
units, excluding from the average any “empty” AoAs. We return to this decision later.

Finally, we compute the final fitness of a Blue allocation as the average of the specific 
fitnesses, averaged over the entire field of Red allocations. Other functions are possible. For 
example, one can use minimax (least regret), maximax, and others to represent risk-aversion or 
risk-taking on the part of the Blue commander. Blue’s mission should influence this function 
selection for computing the fitness of a Blue allocation. The final fitness is
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To summarize, if we define f i j,  as the strategic fitness of a Blue allocation for AoA i and 
Red allocation j, then the final fitness is the average of the strategic fitnesses over all m non-
empty AoAs and all n Red allocations:
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The decision to exclude “empty” AoAs (AoAs to which Blue does not assign any units) 
from the calculation is not trivial. Consider the case in which Red assigns no units to a given 
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AoA. Blue will always obtain the maximum contribution to fitness from such an unguarded 
AoA (i.e., a fitness of 1) as long as at least one Blue unit is assigned to cover it. At first glance, 
then, there is no incentive for Blue to put additional units on a free AoA, even though in reality 
Blue would prefer to place all his units on an AoA that Red does not cover. If we do not exclude 
empty AoAs from the average, the fitness of the Blue allocation is reduced if Blue puts all his 
units on the unguarded AoA (because fitnesses of 0 are averaged in). Excluding these empty 
AoAs allows Blue to achieve maximum fitness by placing all his units on the unguarded AoA, 
thereby avoiding engagement entirely. Note that if there are two or more unguarded AoAs, 
the maximum fitness still averages to 1, regardless of how Blue distributes his units among the 
unguarded AoAs.

Summary

The Phase Two GA discovers Blue allocations by initializing a population of them and then 
iterating through the processes of niching, mating, mutation, and fitness evaluation. In the 
case of n AoAs, the Blue allocation is defined by an n-dimensional vector whose components 
specify the strength of all Blue units on each AoA. The niching algorithm, which is conceptu-
ally identical to the one used in Phase One, uses the Mahalanobis distance metric to determine 
whether two allocations (which are two points in n-dimensional space) are similar enough to 
mate. In Phase Two, unlike Phase One, mutation actually occurs before mating. In the muta-
tion process, each parent allocation has a 10 percent chance of moving each unit to a different 
AoA before the children are produced. Mating follows according to two simple rules: If a given 
unit is assigned to parents with two different AoAs, it will be randomly assigned to one of those 
AoAs in one offspring and to the other AoA in the other offspring. If a given unit is assigned 
to parents with the same AoA, it will be assigned to that same AoA in both offspring. Once 
these allocations have been niched, mutated, and mated, we determine their fitnesses to assess 
which will survive into the next generation. To determine the fitness of a Blue allocation, we 
first define a field of potential Red allocations based on Blue’s activity knowledge. The activ-
ity knowledge is defined by the probability Blue knows the AoA assignment of each Red unit. 
Given this knowledge, we can determine a basic route fitness for each strategy, AoA, and Red 
allocation. The final fitness of a Blue allocation is then the weighted average of the basic route 
fitnesses over routes, strategies, and potential adversary allocations.

Figure 4.2 summarizes how the final fitness of a Blue allocation can be traced through the 
model. The arrows trace the final fitness, in a top-down fashion, back to the Blue intelligence 
parameters, i.e., knowledge of Red’s capability, location, intent, and activity. The basic route 
fitness stems from the total effect of Red on the Blue route, which derives from the location 
uncertainty, the effect function, and the Red behavior model. The parametric inputs to the 
model are the knowledge of Red activity, intent, capability, and location uncertainty; the func-
tional inputs are the effect and uncertainty functions, as well as the entire Red behavior model. 
All of these inputs are highlighted by an orange box. Yellow boxes highlight the mathematical 
expressions that explain how final fitness depends on all these inputs.

We can also trace final fitness back to the quantitative parameters of the Blue mission, i.e., 
total forces allocated, willingness to engage, and starting and ending points. In addition, we 
can trace final fitness back to Blue’s intelligence about Red, as parameterized by intent, activity, 
capability, location, and adaptability. The exact manner in which these factors enter the model 
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has been detailed throughout Chapters Two, Three, and Four. Figure 4.3 summarizes how the 
final fitness of a Blue allocation depends on Blue intelligence and mission.

The result of the model’s two phases is the discovery of several feasible routes and associ-
ated allocations of Blue forces to cover those routes. In the process of computing the routes 
and allocations, we have incorporated Blue’s intelligence about Red intent, activity, capability, 
location, and adaptability; we have also incorporated Blue mission parameters.

Figure 4.2
Tracing Final Fitness of Allocation Back Through the Model
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Figure 4.3
Final Fitness of Blue Algorithm Depends on Blue Intelligence and Mission
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CHAPTER FIVE

Modeling Terrain

Until now, our calculations have assumed that the effect function depends only on the distance 
between Red and Blue units. As previously noted, this implicitly assumes a lack of interesting 
terrain, an assumption rarely borne out by reality. Next, we incorporate the influence of terrain 
on the combat engagement. There are several places in the model where terrain can be incor-
porated naturally. We introduce three specific measures of terrain into the analysis: impassibil-
ity, inhospitableness, and shadowing. “Impassibility” measures the degree to which Blue finds 
certain terrain difficult to cross. “Inhospitableness” measures the degree to which Blue believes 
that terrain will affect Red’s choice of location. “Shadowing” models the influence of terrain 
on Red’s effect on Blue.1 We now describe each of these parameters in more detail and show 
their effects on fitness calculations in the GA.

Impassibility

Impassibility measures the degree to which Blue finds certain terrain difficult to cross. For 
example, dense forest, steep ground, and even an area deemed to be risky (e.g., covered in land 
mines) could result in or contribute to impassibility. Note that although it seems natural to do 
so, our model does not actually impede Blue progress in an “impassible” area. This is because 
we are not explicitly modeling Blue’s changes in speed. However, this approximation should be 
lifted in the future, since speed is a crucial aspect of maneuver.

Instead, we define impassibility for every point and integrate it along an entire Blue route 
to determine the overall difficulty of traversing the route. We define a function T(x) to repre-
sent the difficulty of passage through location x. This function takes on values between zero 
and 1. A value of zero occurs at locations x that Blue may pass through freely. A value of one 
occurs at locations y that Blue cannot pass through. We then define the total impassability of 
a route as the integral of T over all points x in the route. Thus,

T dt T tx .

Like total effect, total impassability influences route fitness. We define the relation between 
impassability and route fitness by a decaying negative exponential function whose exponent is 
equal to total impassability weighted by the tuning parameter (1/ ).The parameter  can be 

1 Terrain could also influence (1) Blue’s ability to deduce Red’s activity and intent and (2) Red’s adaptability. These effects 
are not incorporated into our current model. 
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used to tune Blue’s willingness to pass through undesirable terrain. (Note that nonzero impas-
sibility will implicitly penalize longer routes.) We modified the definition of basic route fitness 
to incorporate terrain impassability:

f e
E T

≡
− +( ).

The parameters  and  now represent the relative importance of Red exposure compared 
to terrain exposure. Specifically, the parameter  represents Blue’s willingness to be exposed to 
Red effect;  represents Blue’s willingness to travel over difficult terrain. These two parameters 
can be adjusted to reflect the relative importance that Blue assigns to each. To be fit, a route 
must be easy to traverse and must limit Blue’s exposure to Red’s expected effect.

Inhospitableness

Inhospitableness represents Blue’s perception of how terrain will affect Red’s choice of location. 
Inhospitableness is not the same as impassibility, but the two are clearly related in many cases 
where certain aspects of terrain (e.g., steepness) affect both Red and Blue similarly.

We define a function L(y) to represent Blue’s perception of how unlikely it is to find Red 
at location y due to terrain factors. This function takes on values between zero and one. A 
value of zero occurs at locations y whose terrain, Blue believes, will not deter Red’s ability or 
willingness to occupy the location. A value of one occurs at locations whose terrain, Blue is 
certain, will prevent Red from occupying the location. For example, an exceptionally steep ter-
rain feature may preclude any heavy units from occupying territory, and this information can 
be incorporated with a value of close to 1. We then modify the uncertainty function for Red’s 
location, f (y), to incorporate the inhospitableness as described by L (y). Thus, 

f e L( )y y
1

2
1

2
2

2

2

y y

.

While in principle we ought to renormalize the overall function f (y) to ensure that it is 
still a valid density function (it must integrate to 1 over all space), that step is not crucial. An 
overall constant will not affect relative fitness but will enter into the equation when we com-
pare the relative importance of Red effect and terrain impassibility. In that case, a lowered total 
effect due to the modification just described must be compensated for by lowering or raising 
the respective parameters.

Ideally, we would like to generate both impassibility and inhospitableness from a single 
function of terrain. This is sensible for a simple facet of terrain, such as a mountain, and we do 
this in the model as implemented.
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Shadowing

The third part of our representation of terrain is the effect of terrain on Red’s effect. We refer to 
this phenomenon as “shadowing” and note that it is different from the effect of terrain on Red 
itself. Hence, it must be modeled separately. In some cases, shadowing may be attributed solely 
to Blue’s position. For example, a jungle may provide cover for Blue. In other cases, a mountain 
may provide cover depending on the relative positions of Red, Blue, and the ridgeline.2

We define a function M (x,y) that represents the influence of terrain on Red’s ability to 
affect location x from location y. This function takes on values between zero and one. A value 
of zero implies that Red cannot affect location x from location y; a value of one implies that 
terrain has no effect on Red’s ability to affect location x from location y. We then modify the 
effect function by multiplying it by M (x,y). Thus, the modified effect function is 

Z
R
B

e M( )
( )

(x, y x, y
1

2 2
2

2

2

x y

)).

A Terrain Example

We consider a simple terrain example: a mountain feature that affects Red and Blue in a similar 
manner. For simplicity, we represent the mountain as a modified Gaussian,

T x e

x xa aM

,2 2

where

M
cos sin

sin cos
p 0
00 1

cos sin

sin cos
.

In this case, a defines the center of the mountain, and η is its width. M stretches the 
mountain into a ridge and rotates it as needed, p is the mountain’s elongation (i.e., aspect ratio), 
and θ is the direction of the ridgeline. An example of such a terrain feature is shown in Figure 
5.1. Multiple Gaussians can be added together to create a more complicated landscape.

2 As an effect on an effect, shadowing is something of a second-order consideration. Accordingly, our current model does 
not currently implement the shadowing function.
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Summary

Table 5.1 explains how terrain is introduced into the model. In particular, we show how 
impassability, inhospitableness, and shadowing ultimately affect the basic fitness of a route. 
In the next chapter, we give numerous examples of the GA outputs, including ones that dem-
onstrate the effect of terrain on AoA selection. For simplicity, all terrain examples employ the 
same function to represent impassibility, T (x), and inhospitableness, L (y), using the modified 
Gaussian

T x e

x xa aM

.2 2

Figure 5.1
An Example of a Mountain Ridge Terrain Feature
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Table 5.1 
Summary of Model Extensions to Incorporate Terrain Effects

Terrain Parameter Effect on Model Comments

Impassibility—T(x)

f e
E T

≡
− +( ),

where

T dt T tx

Route fitness now depends both on exposure to Red’s 
effect and traversal of undesirable terrain

Inhospitableness—L(y)

f e L( )y y
1

2
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2
2

2

2

y y
Red’s location uncertainty now depends on Blue’s 

perception of how inhospitable the terrain is

Shadowing—M(x,y)
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Effect function now depends not only on Red’s strength 
and range but also on the shadowing effects of terrain 
(e.g., those caused by mountains or jungles)
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CHAPTER SIX

Proof-of-Principle Examples

The examples provided in this chapter assume that Blue’s mission is to move from one place to 
another while avoiding Red units (enemies). Our examples sometimes use dots to depict unit 
locations and sometimes use topographic landscapes for ease of visualization. However, these 
examples could just as easily have been drawn with a more military flavor, as demonstrated in 
Figure 6.1. In this figure, Blue has been instructed to move to point alpha while avoiding Red 
units, represented by red diamonds, along the way. In the examples that follow, we consider 
simple bypass scenarios and show the outputs of the GA, which discovers potential Blue AoAs 
and the effects that Blue is likely to encounter.

Figure 6.1
An Example of a Blue Bypass Mission

alpha

B
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A Simple Scenario

In the simple scenario depicted in Figure 6.2, Red remains stationary at the midpoint between 
Blue’s starting position (A) and Blue’s destination (B). Blue has multiple options to consider 
when planning its route. Ultimately, it is the distance between Blue and Red, compared to 
the characteristic distance associated with Red’s expected effect (the standard deviation of 
the Gaussian that represents it), that determines Blue’s best option. As previously shown, the 
widths of the uncertainty function and the Red effect function combine in the expected effect 
expression; the final standard deviation of expected effect is the square root of the sum of vari-
ances, which we refer to as ρ.

There are three cases to consider. If both the start and end points (A and B) lie within ρ 
of Red’s expected position, then Blue’s knowledge of Red’s position is so uncertain that Blue’s 
best option (i.e., the one that minimizes total expected effect) is simply to take the shortest 
route possible to reach his destination. On the other hand, if A and B are farther than ρ from 
Red’s expected position, then Blue knows enough about Red’s location that he benefits from 
maneuvering around Red. In that case, Blue should take the longest route to reach his desti-
nation. Finally, if the distances in question are all similar to the characteristic distance, each 
solution is equally viable.1

This simple example illustrates a primary tradeoff: uncertainty about expected effect along 
an AoA versus the directness of a route. If Blue’s knowledge of Red’s whereabouts is good, then 
Blue benefits by taking time to maneuver around Red. On the other hand, if Blue’s knowledge 
of Red’s location is poor, then time is more critical, and Blue’s best option is perhaps to make 
a beeline for his destination.

Although both the location uncertainty width, , and the capability width, λ, play a role 
in determining the width of the expected effect map, we consider conceptually in the results 
that follow only the effects of varying . Analogous comments could be made about the effect 
of variations in λ because it combines the two variances that determine the expected effect. 

1 The articulation of the three possible options is the direct result of a simple scenario in which the mathematics are easily 
calculated. Thus we were able to verify that the model as instantiated was working correctly.

Figure 6.2
A Simple Scenario

RAND TR423-6.2

3
2

1
0

–1
–2

–2

–1

0

1

3

2

A

A
B

B



Proof-of-Principle Examples    45

We parameterize our results by the relative uncertainty in Red’s position, where relative uncer-
tainty is defined as the ratio of the uncertainty in Red’s position, , to the average distance, d, 
that Blue would be from Red if he were to take the shortest path from A to B.

The Case of High Uncertainty

Here we examine the results of the GA from the simple scenario described above, this time 
assuming high relative uncertainty about Red’s position. In this case, /d equals 1.4. The upper 
plots in Figure 6.3 depict the top ten fittest paths, and the lower plots depict the full set of cen-
troids of all paths in a generation for generations zero, ten, and 20. After only ten generations, 
the top ten fittest paths have all converged on the straight-line, shortest-distance path between 
A and B, as expected. If the location uncertainty width, , is high relative to the average dis-
tance, d, that Blue would be from Red (on the straight-line path), then the expected effect map 
will be relatively flat compared to the one generated using a smaller . Hence, Blue does not 
benefit from maneuvering around Red, instead preferring the shortest path.

In the centroid plots, A and B are the start and end points of all Blue paths, and the red 
dot represents Red’s position (which, in this simple case, is stationary). The Blue dots represent 
the centroids of the entire population of Blue paths, and the purple star represents the centroid 
of the centroids. The larger blue ellipse depicts the niche radius, used to determine whether 
two paths are sufficiently similar to be suitable mates. As the GA converges, the set of centroids 
starts to collapse to a single point. Note that in generation 20, there are multiple blue dots piled 
on top of one another near the centroid of the centroids.

Figure 6.3
Path Evolution—High Uncertainty
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NOTE: At high uncertainty, σ/d=1.4,  the paths quickly converge on one solution. I.e., Blue goes straight
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The Case of Moderate Uncertainty

Figure 6.4 shows the results of the GA, this time assuming moderate relative uncertainty about 
Red’s position. In this case,  equals d, and all three solutions are viable options for Blue. 
At generation 20, the top ten fittest paths include both options to maneuver around Red on 
either side as well as the shortest path between A and B. The corresponding sets of centroids 
over the generations shows the emergence of three distinct niches (i.e., groups of centroids), as 
expected.

Figure 6.4
Path Evolution—Moderate Uncertainty

Generation 0

NOTES: At moderate uncertainty, /d=1, all three solutions emerge. Multiple paths are coextensive. 
Several Blue path centroids are piled up in the middle and difficult to see in the plots.
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The Case of Low Uncertainty

Figure 6.5 shows the results of the GA, this time assuming low relative uncertainty about Red’s 
position. The paths rapidly diverge, generating two distinct solutions that show Blue’s options 
for maneuvering around Red. This result is not surprising, since Blue has good knowledge of 
Red’s whereabouts and hence benefits by maneuvering around him.

Figure 6.5
Path Evolution—Low Uncertainty

Generation 0

NOTE: At low uncertainty, /d = 0.5, the paths rapidly diverge into two solutions. I.e., Blue goes
around Red.
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Final AoAs

Here we examine the AoAs discovered by the GA after 20 generations. We also study the 
effect profiles of these “final AoAs” for the cases of high, medium, and low relative uncertainty 
about Red’s location. We stop the GA after 20 generations because of the relative stability of 
the population’s average fitness of routes in the medium and high uncertainty cases. As noted 
below, fitness does not stabilize after 20 generations in the case of low uncertainty, but the fit 
AoAs are clearly those that maneuver around Red.

Figure 6.6 shows the results of the high relative uncertainty case, in which the fittest 
path, the green path, is the shortest one to the destination. The effect profiles confirm that this 
path does indeed have the smallest total effect (i.e., area under the curve). However, since this 
model is a planning tool, it is interesting to look at other potential AoAs and the effects that 
Blue would expect to encounter if he chose those paths instead.

Figure 6.7 shows the results of the moderate relative uncertainty case, in which all three 
AoAs are viable options for Blue. Although the fitnesses of these AoAs are comparable, their 
effect profiles are considerably different from one another. Which path is preferable depends on 

Figure 6.6
Final AoAs—High Uncertainty
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Final AoAs—Moderate Uncertainty
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the interpretation of the effect profile. In our model, we consider only the area under the curve, 
but many other metrics could also be useful.

Figure 6.8 shows the results of the low relative uncertainty case, in which the GA finds two dis-
tinct AoAs of nearly equal fitness. Blue has the option of maneuvering around Red to either side. Due 
to the symmetry of the scenario, the effect profiles are similar even though the AoAs are distinct.

Fitness Evolution

Figure 6.9 depicts the fitness evolution for the simple scenario run under the cases of high, 
medium, and low relative uncertainty. The high-uncertainty case on the left corresponds to 
poor knowledge about Red. In this case, the convergence to the degenerate solution is rapid. 
Because Blue does not have significant information regarding Red, he is unable to make any 
plan other than the most obvious decision to go straight to his destination.

Figure 6.8
Final AoAs—Low Uncertainty
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Figure 6.9
Fitness Evolution
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In the case of low uncertainty, Blue is so certain of Red’s position that he can choose 
a clear path around Red. Because our current scenario does not directly penalize Blue for 
expending more time, taking a path far away from Red is desirable. The solution diverges to 
infinity in this very simple case.

In case of medium uncertainty, a combination of the behavior exhibited in the low- and 
high-uncertainty cases emerges. The large jump at generation 15 represents the “discovery” of 
a new niche and hence an improvement in fitness.

Terrain Effect on AoA Selection

Our next example demonstrates how terrain influences the selection of Blue AoAs. We con-
sider a simple scenario with two Red units. On the left side of Figure 6.10, three AoAs are 
diverted south of the two Red units. On flat land, Blue’s best choice is to go straight to the goal, 
simply avoiding Red along the way.

The mountain shown on the right side of Figure 6.10 is not technically impassible, but it 
increasingly penalizes both Red and Blue forces as they approach the ridge’s center. Red is not 
expected to travel over the mountain, so the effect function is lowered there; ordinarily, this 
would make the mountain more attractive to Blue. However, Blue’s route fitness is penalized 
by the difficult terrain as well. Faced with this mountain, Blue may skirt its base to the right 
or go well out of the way to the left to avoid Red.

In this instance, the Red units are moving slower than Blue and have moderate adapt-
ability. We have chosen this simple scenario, with only two Red units, to illustrate the terrain 
effects more clearly. In more-complicated scenarios, it can be difficult for the eye to discern 
the effects.

Figure 6.10
Terrain Influence on AoAs
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Figure 6.11 shows the anticipated Red response to each of the three Blue AoAs. In this 
scenario, the Red strategy is for each unit to attempt to intercept Blue individually. Red is 
slightly slower than Blue and has moderate to low adaptability. Note that Red is willing to tra-
verse some of the lower parts of the mountain, but only when he can move significantly closer 
to Blue. For example, in AoAs 1 and 2, Red is willing to cross at higher elevations of the moun-
tain near the start of his path when he is closer to Blue. However, in the middle of Red’s path, 
he is farther behind Blue and hence has less to gain by traversing the mountain. Red chooses 
his direction by trying to maximize his expected effect, but he encounters a tradeoff: quickly 
gaining proximity to Blue by going through worse terrain versus slowly catching up to Blue 
but going through better terrain.

Figure 6.11
Red Pursues Blue Around the Mountain

AoA 1 AoA 2 AoA 3
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Effect of Red Behavior Model on AoA Selection

Our next set of examples demonstrates how Red’s behavior model, specifically Blue’s percep-
tion of Red’s adaptability and intelligence, influences both Blue’s AoA selection and Red’s 
motion. Here we consider a new scenario in which two Red units are trying to coordinate their 
efforts to mass effects on Blue.

Effect of Red’s Adaptability

In the case of a barely adaptive Red, Blue tricks Red into following him around; accordingly, 
Red is unable to intercept Blue, as seen in Figure 6.12. Note that while the Blue starting posi-
tion and mission are the same as in the example used to illustrate the effects of terrain, the Red 
units start in a different position. This particular engagement takes place on flat terrain. We 
show the results for Red units that can travel at 60 percent of Blue’s speed.

In this example, updates occur at every four time steps, giving Red a fairly low ability 
to adapt. To put that number in perspective, if Blue heads straight for his destination, he will 
reach it within about 30 time steps. Most paths are significantly longer, as shown. Red’s intel-
ligence is neither gaining ground nor failing to keep up, because Red receives exactly four new 
time steps of information every four time steps. In terms of earlier notation, the parameter D 
equals 1.

Figure 6.12
Blue Evades Red When Red Is Less Adaptive
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Figure 6.13 shows the results for a more adaptive Red. Here, Red is receiving updates 
about Blue’s path every two time steps, twice as frequently as during the previous case. Every 
two time steps, Red acquires two time steps’ more worth of knowledge regarding Blue’s future 
path. Note that Red stops when he intercepts Blue’s path, but will start up again and follow 
if Blue runs past. In this case, the most fit path is AoA 1, which goes straight to the destina-
tion. Because Blue realizes that he cannot avoid Red, Blue’s best course of action is the shortest 
path.

Remember, however, that the adaptability parameter describes Blue’s perception of Red’s 
behavior. If Blue credits Red with being smarter than he really is, Blue’s options diminish. This 
is precisely what is occurring in Figure 6.13 compared to Figure 6.12.

Figure 6.13
Blue Cannot Escape a More Adaptive Red
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Figure 6.14 shows the effect profiles of the three AoAs for the less adaptive (left) and more 
adaptive (right) cases. In the more adaptive case, Blue is exposed to high levels of Red effects, 
but this exposure occurs over a shorter period of time, since Red is able to intercept Blue along 
a more direct route. In the less adaptive case, Blue takes a much longer route while avoiding 
Red; therefore, Blue is exposed to low levels of Red effect, but this exposure occurs over a 
longer period of time.

In the less adaptive case, the effect profile shows that Red gets close to Blue at the begin-
ning and end of his journey, but Blue manages to avoid Red during the middle; in the more 
adaptive case, Red always intercepts.

Figure 6.14
Effect Profiles Reflect the Results of Red Adaptability
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Effect of Red’s Intelligence

Here we demonstrate the impact of Red’s intelligence on Red’s motion and hence ultimately 
on AoA selection. We used the same scenario described in the adaptability examples but kept 
the time between updates fixed at every two time steps, varying instead the look-ahead times. 
Figure 6.15 compares the AoAs and corresponding Red responses as Red intelligence increases. 
As Red gains more intelligence, Blue realizes that he cannot evade Red and instead heads 
directly for his destination. Red is more likely to intercept Blue as Red gains more intelligence. 
Red also intercepts Blue sooner, with fewer changes in direction.

Figure 6.15
Increasing Red Intelligence Diminishes Blue Options
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Red Activity Knowledge Affects Blue Allocations

When Blue has no knowledge, the field of allocations he faces is quite varied, and Blue will 
tend to allocate forces according to fitness. In the example shown in Figure 6.16, AoA 1 is the 
most fit and AoA 3 is the least fit. Hence, Blue allocates a majority of his forces to AoA 1, and 
fewer and fewer forces to AoAs 2 and 3. If Blue has some knowledge of Red activity (the chart 
in the middle), then Blue will try to dominate Red where he expects Red to go and will allocate 
forces where he expects Red not to be. We see precisely this effect in the case when Blue knows 
where only half of Red’s units are. With full knowledge (the chart on the right), Blue can suc-
cessfully plan to avoid the main Red force.

Figure 6.16
Improvement in Blue Allocations with Red Activity Knowledge
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Summary

To validate the model, we first considered a simple scenario in which Red was stationary and 
located at the midpoint between Blue’s start and end points. Blue’s mission was to reach his 
destination while minimizing his exposure to Red. Routes discovered by the model show that 
the chosen path depends on intelligence about Red’s location and capability. Specifically, if 
Blue is relatively certain about Red’s location and capability, then Blue benefits from maneu-
vering around Red. However, if Blue is very uncertain about Red’s location or capability or 
both, Blue does not benefit from maneuvering around the enemy, but rather should take the 
most direct route to his destination. Over various cases, the model clearly demonstrates the 
value of intelligence in the planning process.

The model also demonstrates the influence of terrain on AoA selection. We modeled a 
simple mountain feature that affected both Blue and Red forces. Because Red was less likely 
to travel over the mountainous area, his effect on Blue was diminished in this region. Hence, 
we expected this region to be more desirable to Blue. However, the desirability of Blue routes 
was also penalized by the difficult terrain. Ultimately, the model discovered Blue AoAs that 
avoided the mountainous region as much as possible while minimizing Blue exposure to Red.

We also considered various other cases to demonstrate the effect of enemy intelligence and 
adaptability on AoA selection. Enemy adaptability is the rate at which Red receives updates 
about Blue’s route. Enemy intelligence is the amount of information Red receives at each 
update. Unsurprisingly, Blue is more likely to evade a less adaptive Red than a more adaptive 
Red. Also, more-intelligent Red forces diminished Blue’s options.

We also demonstrated the effect of Blue knowledge of Red activity on Blue force alloca-
tion to AoAs. Activity knowledge is the likelihood that Blue knows to which AoA each Red 
unit has been assigned. We found that with partial activity knowledge, Blue tries to dominate 
Red where Blue expects Red to be; Blue will also allocate forces where he expects Red not to 
be. With perfect activity knowledge, Blue can completely avoid the AoA where the dominant 
Red force is located.
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CHAPTER SEVEN

Conclusions and Future Extensions

This report describes a combat planning model that uses GAs to discover Blue AoAs and asso-
ciated force allocation schemes. The model uses both Blue’s intelligence about Red and Blue’s 
intelligence about the terrain to perform route planning and force allocation. Blue’s intelli-
gence about Red consists of knowledge of Red’s location, capability, activity, and intent. Blue’s 
knowledge of the terrain is parameterized by his knowledge of the impassibility, inhospitable-
ness, and shadowing effects of his environment. Knowledge of Blue’s mission, specifically his 
start and end points and his willingness to engage, also play a role in the planning process.

We also developed a Red behavior model to enable planning against a sophisticated enemy. 
This model includes parameters that allow us to quantify Blue’s perception of Red’s intelli-
gence and adaptability. These parameters affect Red’s motion and hence Blue’s ultimate AoA 
selection. The sophisticated look-ahead representation used in Red’s behavior model allows the 
model to discover interesting Blue maneuver schemes, including feints.

The landscape of possible Blue AoAs and allocations is sufficiently vast that a smart search 
algorithm that can evolve solutions to this problem is necessary. The GA approach proved an 
efficient means of searching this space. One general implementation challenge associated with 
the method described here lies in generating data to populate the model. Specifically, it is 
important to choose both the appropriate “capability” index for both Blue and Red as well as 
ways to translate that capability into “fitness.” In our examples, we used generalized capabilities 
and an additive function to determine overall fitness.

Future extensions of this combat planning model are possible. For instance, we could 
improve the modeling of Blue options and Red’s adaptability. The Red behavior model could 
include more-complex Red projection of Blue movement for the cases in which Red lacks 
knowledge of Blue’s future path. We could also extend the model to allow the speed of Red and 
Blue units to vary during route planning. Finally, the extrapolation of various Blue missions 
would be a useful extension.

Simultaneous consideration of AoAs would allow us to consider synergistic effects between 
Red and Blue units. Where AoAs converge or cross, units pursuing one AoA should be able to 
affect units on the other AoA. This extension would give further insights into AoA selection 
and allow synchronization in planning schemes to be explored.
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